Prediksi Kemacetan Lalu Lintas di Persimpangan Menggunakan Metode Random Forest

Authors

  • Auna Fajriah Universitas Almuslim
  • Imam Universitas Almuslim
  • Iqbal Universitas Almuslim

Keywords:

Traffic Congestion, Intersection, Random Forest, Prediction, Machine Learning

Abstract

Traffic congestion at intersections is signifikan problem in urban areas that causes decreased transportation efficiency, increased air pollution and economic losses. The research data were obtained from the extraction of live CCTV video with main features including time, number of vehicles, average speed and congestion class (congestion, light congestion, and freeway). The research data were obtained from the extraction of live CCTV video with main features including time, number of vehicles, average speed and congestion class (congestion, light congestion, and freeway). The dataset was then saved in CSV format and subjected to preprocessing, model training, and evaluation. The results indicate that this model can form the basis for an intelligent traffic management system. This research contributes to traffic management at intersections and supports the development of artificial intelligence-based solutions to reduce congestion

Downloads

Download data is not yet available.

References

[1] Suranto, M. Ardan, T. E. Wulandari, S. A. Rahman, and S. Hasibuan, “Kajian Perencanaan Rute Pada Proyek Pembangunan LRT (Light Rail Transit) Medan,” JCEBT (Journal of Civil Engineering, Building and Transportation), vol. 6, no. 2, 2022.

[2] D. Farhatun and M. L. Hariani, “Evaluasi Kinerja Lalu Lintas di Ruas Jalan Jendral Ahmad Yani Depan Gateway Cicadas Kota Bandung,” Journal of Research and Inovation in Civil Engineering as Applied Science (RIGID), vol. 3, no. 1, 2024, doi: 10.58466/rigid.v3i1.1444.

[3] E. Maha, “ANALISIS FAKTOR-FAKTOR PENDORONG PENYEBAB TERJADINYA KEMACETAN DI KAWASAN PAJUS PADANG BULAN MEDAN,” Jurnal Samudra Geografi, vol. 5, no. 1, 2022, doi: 10.33059/jsg.v5i1.4716.

[4] R. Amin, A. Pratama, and I. Manalu, “Efektivitas Penerapan Tilang Elektronik Terhadap Pelanggaran Lalu Lintas di Wilayah Hukum Polda Metro Jaya,” KRTHA BHAYANGKARA, vol. 14, no. 2, 2020, doi: 10.31599/krtha.v14i2.148.

[5] I. Muslem R, M. K. M. Nasution, S. Sutarman, and S. Suherman, “A scalable model for Capacitated Vehicle Routing Problem with Pickup and Delivery under dynamic constraints using adaptive heuristic-based ant colony optimization,” Eastern-European Journal of Enterprise Technologies, vol. 1, no. 3 (133), pp. 57–65, Feb. 2025, doi: 10.15587/1729-4061.2025.319733.

[6] R. Imam Muslem, M. K. M. Nasution, Sutarman, and Suherman, “Algorithms and Approaches for the Vehicle Routing Problem with Pickup and Delivery (VRPPD): A Survey,” in 2024 Ninth International Conference on Informatics and Computing (ICIC), 2024, pp. 1–5. doi: 10.1109/ICIC64337.2024.10956290.

[7] H. Nurnaningsih, Y. Setyaningsih, and ..., “Praktik Pencegahan Keracunan Pb Pada Petugas Gardu Jalan Tol di daerah Bandung,” Jurnal Promosi Kesehatan …, vol. 6, no. 2, 2011.

[8] F. Hafifah, S. Rahman, and S. Asih, “Klasifikasi Jenis Kendaraan Pada Jalan Raya Menggunakan Metode Convolutional Neural Networks (CNN),” TIN: Terapan Informatika Nusantara, vol. 2, no. 5, 2021.

[9] G. Yaldi, I. M. Nur, and A. Apwiddhal, “Analisis Karakteristik Perjalanan dan Perilaku Pengguna Jalan Terhadap Moda Trans Padang Virtual,” Jurnal Ilmiah Rekayasa Sipil, vol. 18, no. 2, 2021, doi: 10.30630/jirs.v18i2.664.

[10] M. Muslih and A. D. Krismawan, “KLASIFIKASI PENYAKIT DAUN TOMAT BERBASIS ALGORITMA K-NEAREST NEIGHBOR,” Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi), vol. 8, no. 01, 2024, doi: 10.30998/semnasristek.v8i01.7141.

[11] N. Fajriyani, E. E. Pratama, and R. Septiriana, “Optimasi Hyperparameter pada Neural Network (Studi Kasus: Identifikasi Komentar Cyberbullying Instagram),” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 9, no. 2, 2023, doi: 10.26418/jp.v9i2.68319.

[12] I. R. Muslem and T. M. Johan, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Citra Ikan Menggunakan Algoritma Convolutional Neural Network dengan Arsitektur VGG-16,” Media Online), vol. 4, no. 2, pp. 978–985, 2023, doi: 10.30865/klik.v4i2.1209.

[13] L. Luthfi, R. Imam Muslem, D. Armiady, S. Sriwinar, R. Fajri, and I. Iqbal, “Analysis of CNN Method for Image Classification of Coconut Ripeness Levels,” in 2023 Eighth International Conference on Informatics and Computing (ICIC), IEEE, Dec. 2023, pp. 1–6. doi: 10.1109/ICIC60109.2023.10381964.

[14] I. R. Muslem, “KLIK: Kajian Ilmiah Informatika dan Komputer Image Classification pada Kasus American Sign Language Menggunakan Support Vector Machine,” Media Online), vol. 4, no. 2, pp. 1184–1191, 2023, doi: 10.30865/klik.v4i2.1242.

[15] I. Muslem and D. Armiady, “A PSO-Based CVRPPD Model with Weather and Traffic Constraints for Two-Wheeled Urban Delivery in Indonesia,” Instal: Jurnal Komputer, vol. 17, pp. 281–290, 2025, doi: 10.54209/jurnalinstall.v17i05.388.

[16] F. Alifiana, M. F. Asnawi, I. A. Ihsannudin, M. A. M. Baihaqy, and D. Asmarajati, “ANALISIS SENTIMEN APLIKASI DUOLINGO MENGGUNAKAN ALGORITMA NAÏVE BAYES DAN SUPPORT MACHINE LEARNING,” Device, vol. 13, no. 2, 2023, doi: 10.32699/device.v13i2.5905.

[17] R. W. Pratiwi, S. F. H, D. Dairoh, D. I. Af’idah, Q. R. A, and A. G. F, “Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM),” Journal of Informatics, Information System, Software Engineering and Applications (INISTA), vol. 4, no. 1, 2021, doi: 10.20895/inista.v4i1.387.

[18] A. Kholik, “KLASIFIKASI MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN) PADA TANGKAPAN LAYAR HALAMAN INSTAGRAM,” Jurnal Data Mining dan Sistem Informasi, vol. 2, no. 2, 2021, doi: 10.33365/jdmsi.v2i2.1345.

[19] A. Y. Agusyul and F. Firmansyah, “Prediksi Penyakit Jantung Menggunakan Algoritma Random Forest,” Jurnal Minfo Polgan, vol. 12, no. 2, 2023, doi: 10.33395/jmp.v12i2.13214.

Published

2025-12-27

How to Cite

Fajriah, A., Imam, & Iqbal. (2025). Prediksi Kemacetan Lalu Lintas di Persimpangan Menggunakan Metode Random Forest. Aceh Journal of Computer Science , 2(3). Retrieved from https://jurnal.fikompublisher.com/ilka/article/view/20