Clustering Of Prospective Students At Universitas Almuslim Using K-Means Clustering
Keywords:
Clustering, K-Means, Universitas Almuslim, Google Colab,, Academic InterestsAbstract
The diverse academic backgrounds of prospective new students at Almuslim University often present challenges in determining the appropriate field of study. Determining the field of study is crucial because choosing the wrong study program can impact the learning process and the development of students' potential during their studies. Selecting the right field of study allows students to learn optimally and prepare themselves for the world of work according to their interests and abilities. It can also assist the university in recommending study programs with appropriate fields of study to develop a more targeted admission strategy. This study applies the clustering method with the K-Means algorithm to help group prospective students into two fields of study: science and social science. This field grouping is based on 1000 prospective new students' data with attributes of diploma grades (Mathematics, Science, Indonesian, and Social Studies), test scores, and field interests. The analysis process carried out using the K-Means clustering method on Google Colab resulted in a calculation of 17 iterations, C1 (science) with a total of 518 people who have higher interests and values in the field of science, and C2 (social) with a total of 482 people who have higher interests and values in the field of social. This division confirms that the K-Means algorithm is able to group data based on the characteristics in the dataset. With these results, K-Means Clustering is proven effective in grouping prospective students of Almuslim University based on their academic background and interests
Downloads
References
[1] M. M. Yafi and Taqwanur, “B. ANALISIS VALIDITAS DAN RELIABILITAS INSTRUMEN KEPUASAN PELAYANAN AKADEMIK,” Jurnal Teknik Industri dan Kimia, vol. 5, no. 1, 2022, doi: 10.54980/jtik.v5i1.186.
[2] Yovi, Ringgo Dwika, and Eka, “Penerapan Metode Monte Carlo pada Simulasi Prediksi Jumlah Calon Mahasiswa Baru Universitas Muhammadiyah Bengkulu,” Jurnal PROCESSOR, vol. 17, no. 2, 2022, doi: 10.33998/processor.2022.17.2.1224.
[3] G. W. N. Wibowo and M. A. Manan, “Penerapan Algoritma Naive Bayes Untuk Prediksi Heregistrasi Calon Mahasiswa Baru,” JTINFO (Jurnal Teknik Informatika), vol. 1, no. 1, 2022.
[4] T. Bartin, “PENDIDIKAN ORANG DEWASA SEBAGAI BASIS PENDIDIKAN NON FORMAL,” Jurnal Teknodik, 2018, doi: 10.32550/teknodik.v10i19.398.
[5] R. Hasan, “MENUMBUHKAN SIKAP NASIONALISME DAN BELA NEGARA MAHASISWA MELALUI PENDIDIKAN KEWARGANEGARAAN DI PERGURUAN TINGGI,” Jurnal Tunas Pendidikan, vol. 5, no. 1, 2022, doi: 10.52060/pgsd.v5i1.890.
[6] W. Wasilah, I. Azzaroh, N. Rahmawati, and A. Q. Z. Fitriana, “Pengaruh Salah Pilih Jurusan Terhadap Nilai Akademik Mahasiswa Program Studi BKI UIN Khas Jember,” Jurnal Ilmu Sosial, Humaniora dan Seni, vol. 1, no. 6, 2023, doi: 10.62379/jishs.v1i6.872.
[7] W. Primayasa, I. Arifin, and M. Y. Baharsyah, “Pengaruh Salah Pilih Jurusan Terhadap Rasa Putus Asa Mahasiswa Teknik Informatika,” Nathiqiyyah, vol. 3, no. 1, 2020, doi: 10.46781/nathiqiyyah.v3i1.76.
[8] A. T. Santo and I. N. Alfian, “Hubungan Dukungan Sosial dan Kecemasan dalam Menghadapi Dunia Kerja pada Mahasiswa Akhir,” Buletin Riset Psikologi dan Kesehatan Mental (BRPKM), vol. 1, no. 1, 2021, doi: 10.20473/brpkm.v1i1.24895.
[9] H. Haryati and N. Hasanah, “Kecemasan Mahasiswa Fakultas Dakwah Menghadapi Dunia Kerja,” INNOVATIO: Journal for Religious Innovation Studies, vol. 19, no. 2, 2020, doi: 10.30631/innovatio.v19i2.88.
[10] F. Handayani, “Aplikasi Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokan Mahasiswa Berdasarkan Gaya Belajar,” Jurnal Teknologi dan Informasi, vol. 12, no. 1, 2022, doi: 10.34010/jati.v12i1.6733.
[11] A. Agneresa, A. L. Hananto, S. S. Hilabi, A. Hananto, and T. Tukino, “Strategi Promosi Penerapan Data Mining Mahasiswa Baru Dengan Metode K-Means Clustering,” Dirgamaya: Jurnal Manajemen dan Sistem Informasi, vol. 2, no. 2, 2022, doi: 10.35969/dirgamaya.v2i2.275.
[12] D. Armiady, “Analisis Metode DBSCAN (Density-Based Spatial Clustering of Application with Noise) dalam Mendeteksi Data Outlier,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 6, 2022, doi: 10.30865/jurikom.v9i6.5080.
[13] D. Armiady and I. Muslem R., “Penetapan Klaster Siswa Unggul Dengan Menggunakan Algoritma Roc-Smarter,” Jurnal TIKA, vol. 7, no. 2, 2022, doi: 10.51179/tika.v7i2.1229.
[14] I. R. Muslem and T. M. Johan, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Citra Ikan Menggunakan Algoritma Convolutional Neural Network dengan Arsitektur VGG-16,” Media Online), vol. 4, no. 2, pp. 978–985, 2023, doi: 10.30865/klik.v4i2.1209.
[15] D. Triyansyah and D. Fitrianah, “Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,” Jurnal Telekomunikasi dan Komputer, vol. 8, no. 3, 2018, doi: 10.22441/incomtech.v8i3.4174.
[16] S. Aulia, “KLASTERISASI POLA PENJUALAN PESTISIDA MENGGUNAKAN METODE K-MEANS CLUSTERING (STUDI KASUS DI TOKO JUANDA TANI KECAMATAN HUTABAYU RAJA),” Djtechno: Jurnal Teknologi Informasi, vol. 1, no. 1, 2021, doi: 10.46576/djtechno.v1i1.964.
[17] R. NOVIANTO, “Penerapan Data Mining menggunakan Algoritma K-Means Clustering untuk Menganalisa Bisnis Perusahaan Asuransi,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 6, no. 1, 2019, doi: 10.35957/jatisi.v6i1.150.
[18] N. T. Hartanti, “Metode Elbow dan K-Means Guna Mengukur Kesiapan Siswa SMK Dalam Ujian Nasional,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 6, no. 2, 2020, doi: 10.25077/teknosi.v6i2.2020.82-89.
[19] F. Grandoni, R. Ostrovsky, Y. Rabani, L. J. Schulman, and R. Venkat, “A refined approximation for Euclidean k-means,” Inf Process Lett, vol. 176, 2022, doi: 10.1016/j.ipl.2022.106251.
[20] E. Rohaeti, I. M. Sumertajaya, A. H. Wigena, and K. Sadik, “MTSClust with Handling Missing Data Using VAR-Moving Average Imputation,” Mathematics and Statistics, vol. 11, no. 2, 2023, doi: 10.13189/ms.2023.110201.
[21] M. Andryan, M. Faisal, and R. Kusumawati, “K-Means Binary Search Centroid With Dynamic Cluster for Java Island Health Clustering,” Jurnal Riset Informatika, vol. 5, no. 3, 2023, doi: 10.34288/jri.v5i3.511.
[22] K. Arai and A. Ridho Barakbah, “Hierarchical K-means: an algorithm for centroids initialization for K-means,” 2007.
[23] L. Luthfi, R. Imam Muslem, D. Armiady, S. Sriwinar, R. Fajri, and I. Iqbal, “Analysis of CNN Method for Image Classification of Coconut Ripeness Levels,” in 2023 Eighth International Conference on Informatics and Computing (ICIC), IEEE, Dec. 2023, pp. 1–6. doi: 10.1109/ICIC60109.2023.10381964.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aceh Journal of Computer Science

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This journal is an open access journal that provides direct, barrier-free national access to the full text of all published articles without any cost to readers or their institutions. Readers are entitled to read, download, copy, distribute, print, search, or link to the full text of all articles in the ILKA Journal. This journal provides open access to its content on the principle that making research freely available to the public supports greater global knowledge exchange.
