Classification of Vehicle License Plates Based on Specific Regions Using the Optical Character Recognition (OCR) Algorithm

Authors

  • Cut Haura Hayatun Jannah Universitas Almuslim
  • Imam Universitas Almuslim
  • Dasril Universitas Almuslim

Keywords:

Classification, Vehicle License Plate, Optical Character Recognition, EasyOCR, Support Vector Machine, Random Forest, Image Processing

Abstract

The advancement of artificial intelligence (AI) and digital image processing technologies has enabled the development of automated vehicle identification systems. This study aims to design a license plate classification system based on specific regional codes using the Optical Character Recognition (OCR) approach. The process involves several key stages, including image preprocessing (grayscale conversion, sharpening, noise reduction, and thresholding), character extraction via EasyOCR, and regional classification using Support Vector Machine (SVM) and Random Forest algorithms. The dataset consists of 1,920 vehicle plate images collected from two regions: BK (Medan) and BL (Aceh). Experimental results indicate that the SVM model achieved 86% accuracy, while the Random Forest model reached 84% accuracy. The system is deployed as a web-based application to facilitate automatic and efficient regional identification of vehicle plates. This research is expected to contribute to traffic monitoring systems and transportation security improvements

Downloads

Download data is not yet available.

References

[1] E. Abdul Kadir, Nesi Syafitri, Dedikarni, and Tu Bagus Dwi Fikri, “PELATIHAN DASAR ARDUINO UNTUK ROBOTIKA CERDAS DENGAN PENERAPAN TEKNOLOGI KECERDASAN BUATAN UNTUK SEKOLAH MENENGAH,” Jurnal Pengabdian Masyarakat dan Penerapan Ilmu Pengetahuan, vol. 4, no. 2, 2023, doi: 10.25299/jpmpip.2023.14848.

[2] I. Muslem and D. Armiady, “A PSO-Based CVRPPD Model with Weather and Traffic Constraints for Two-Wheeled Urban Delivery in Indonesia,” Instal: Jurnal Komputer, vol. 17, pp. 281–290, 2025, doi: 10.54209/jurnalinstall.v17i05.388.

[3] M. Rizal Toha and A. Triayudi, “PENERAPAN MEMBACA TULISAN DI DALAM GAMBAR MENGGUNAKAN METODE OCR BERBASIS WEBSITE (STUDI KASUS: e-KTP),” JST (Jurnal Sains dan Teknologi), vol. 11, no. 1, 2022, doi: 10.23887/jstundiksha.v11i1.42279.

[4] C. Jeeva, T. Porselvi, B. Krithika, R. Shreya, G. S. Priyaa, and K. Sivasankari, “Intelligent Image Text Reader using Easy OCR, NRCLex & NLTK,” in 3rd International Conference on Power, Energy, Control and Transmission Systems, ICPECTS 2022 - Proceedings, 2022. doi: 10.1109/ICPECTS56089.2022.10047136.

[5] A. Karnawat, “A Survey on Easy OCR Techniques used to build Systems for Visually Impaired People,” Int J Res Appl Sci Eng Technol, vol. 6, no. 1, 2018, doi: 10.22214/ijraset.2018.1216.

[6] R. Sushma, M. Rithika Devi, N. Maheshwaram, and D. R. Sreedhar Bhukya, “Automatic License Plate Recognition with YOLOv5 and Easy-OCR method,” International Journal Of Innovative Research In Technology, vol. 9, no. 1, 2022.

[7] M. Qorib, T. Oladunni, M. Denis, E. Ososanya, and P. Cotae, “Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset,” Expert Syst Appl, vol. 212, 2023, doi: 10.1016/j.eswa.2022.118715.

[8] P. Shah, P. Swaminarayan, and M. Patel, “Sentiment analysis on film review in Gujarati language using machine learning,” 2022. doi: 10.11591/ijece.v12i1.pp1030-1039.

[9] M. Schonlau and R. Y. Zou, “The random forest algorithm for statistical learning,” Stata Journal, vol. 20, no. 1, 2020, doi: 10.1177/1536867X20909688.

[10] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, no. 2, 2016, doi: 10.1007/s11749-016-0481-7.

[11] J. Liu and E. Zio, “A scalable fuzzy support vector machine for fault detection in transportation systems,” Expert Syst Appl, vol. 102, 2018, doi: 10.1016/j.eswa.2018.02.017.

[12] L. Luthfi, R. Imam Muslem, D. Armiady, S. Sriwinar, R. Fajri, and I. Iqbal, “Analysis of CNN Method for Image Classification of Coconut Ripeness Levels,” in 2023 Eighth International Conference on Informatics and Computing (ICIC), IEEE, Dec. 2023, pp. 1–6. doi: 10.1109/ICIC60109.2023.10381964.

[13] I. R. Muslem, “KLIK: Kajian Ilmiah Informatika dan Komputer Image Classification pada Kasus American Sign Language Menggunakan Support Vector Machine,” Media Online), vol. 4, no. 2, pp. 1184–1191, 2023, doi: 10.30865/klik.v4i2.1242.

[14] I. R. Muslem and T. M. Johan, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Citra Ikan Menggunakan Algoritma Convolutional Neural Network dengan Arsitektur VGG-16,” Media Online), vol. 4, no. 2, pp. 978–985, 2023, doi: 10.30865/klik.v4i2.1209.

[15] B. Sabini, “Perbandingan Metode Konversi Grayscale Menggunakan Metrik Kualitas Butteraugli,” Jurnal Inovasi Informatika, vol. 6, no. 2, 2021, doi: 10.51170/jii.v6i2.189.

[16] P. Batra, N. Phalnikar, D. Kurmi, J. Tembhurne, P. Sahare, and T. Diwan, “OCR-MRD: performance analysis of different optical character recognition engines for medical report digitization,” International Journal of Information Technology (Singapore), vol. 16, no. 1, 2024, doi: 10.1007/s41870-023-01610-2.

[17] N. Premchaiswadi, S. Yimgnagm, and W. Premchaiswadi, “A scheme for salt and pepper noise reduction and its application for OCR systems,” WSEAS Transactions on Computers, vol. 9, no. 4, 2010.

[18] V. A. Yépez et al., “OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using seahorse xf analyzer,” PLoS One, vol. 13, no. 7, 2018, doi: 10.1371/journal.pone.0199938.

[19] J. Lázaro, J. L. Martín, J. Arias, A. Astarloa, and C. Cuadrado, “Neuro semantic thresholding using OCR software for high precision OCR applications,” Image Vis Comput, vol. 28, no. 4, 2010, doi: 10.1016/j.imavis.2009.09.011.

[20] rohan lal kshetry, “Image Preprocessing and Modified Adaptive Thresholding for Improving Ocr,” SSRN Electronic Journal, 2022, doi: 10.2139/ssrn.4135966.

Published

2025-12-27

How to Cite

Hayatun Jannah, C. H., Imam, & Dasril. (2025). Classification of Vehicle License Plates Based on Specific Regions Using the Optical Character Recognition (OCR) Algorithm. Aceh Journal of Computer Science , 2(3). Retrieved from https://jurnal.fikompublisher.com/ilka/article/view/16