Klasifikasi Plat Nomor Kenderaan Bedasarkan Wilayah Tertentu Menggunakan Algoritma Optical Character Recognition (OCR)

Penulis

  • Cut Haura Hayatun Jannah Universitas Almuslim
  • Imam Muslem Universitas Almuslim
  • Dasril Azmi Universitas Almuslim

Kata Kunci:

Klasifikasi, Plat Nomor Kendaraan, Optical Character Recognition, EasyOCR, Support Vector Marchine, Random Forest, Pengolahan Citra

Abstrak

Kemajuan teknologi kecerdasan buatan (AI) dan pemrosesan citra digital memberikan peluang besar dalam menciptakan sistem identifikasi kendaraan secara otomatis. Penelitian ini bertujuan untuk merancang sistem klasifikasi plat nomor kendaraan berdasarkan kode wilayah tertentu dengan memanfaatkan algoritma Optical Character Recognition (OCR). Proses yang diterapkan meliputi tahap prapemrosesan gambar (konversi ke grayscale, penajaman, reduksi noise, dan thresholding), ekstraksi karakter menggunakan EasyOCR, serta klasifikasi wilayah menggunakan algoritma Support Vector Machine (SVM) dan Random Forest. Dataset yang digunakan mencakup 1.920 citra plat nomor dari dua wilayah berbeda, yaitu BK (Medan) dan BL (Aceh). Hasil pengujian menunjukkan bahwa model SVM memperoleh akurasi sebesar 86%, sedangkan model Random Forest mencatatkan akurasi sebesar 84%. Sistem ini dikembangkan dalam bentuk aplikasi web untuk mempermudah proses identifikasi wilayah kendaraan secara otomatis dan efisien. Penelitian ini diharapkan dapat mendukung sistem pemantauan lalu lintas serta peningkatan keamanan transportasi

Unduhan

Data unduhan belum tersedia.

Referensi

[1] E. Abdul Kadir, Nesi Syafitri, Dedikarni, and Tu Bagus Dwi Fikri, “PELATIHAN DASAR ARDUINO UNTUK ROBOTIKA CERDAS DENGAN PENERAPAN TEKNOLOGI KECERDASAN BUATAN UNTUK SEKOLAH MENENGAH,” Jurnal Pengabdian Masyarakat dan Penerapan Ilmu Pengetahuan, vol. 4, no. 2, 2023, doi: 10.25299/jpmpip.2023.14848.

[2] I. Muslem and D. Armiady, “A PSO-Based CVRPPD Model with Weather and Traffic Constraints for Two-Wheeled Urban Delivery in Indonesia,” Instal: Jurnal Komputer, vol. 17, pp. 281–290, 2025, doi: 10.54209/jurnalinstall.v17i05.388.

[3] M. Rizal Toha and A. Triayudi, “PENERAPAN MEMBACA TULISAN DI DALAM GAMBAR MENGGUNAKAN METODE OCR BERBASIS WEBSITE (STUDI KASUS: e-KTP),” JST (Jurnal Sains dan Teknologi), vol. 11, no. 1, 2022, doi: 10.23887/jstundiksha.v11i1.42279.

[4] C. Jeeva, T. Porselvi, B. Krithika, R. Shreya, G. S. Priyaa, and K. Sivasankari, “Intelligent Image Text Reader using Easy OCR, NRCLex & NLTK,” in 3rd International Conference on Power, Energy, Control and Transmission Systems, ICPECTS 2022 - Proceedings, 2022. doi: 10.1109/ICPECTS56089.2022.10047136.

[5] A. Karnawat, “A Survey on Easy OCR Techniques used to build Systems for Visually Impaired People,” Int J Res Appl Sci Eng Technol, vol. 6, no. 1, 2018, doi: 10.22214/ijraset.2018.1216.

[6] R. Sushma, M. Rithika Devi, N. Maheshwaram, and D. R. Sreedhar Bhukya, “Automatic License Plate Recognition with YOLOv5 and Easy-OCR method,” International Journal Of Innovative Research In Technology, vol. 9, no. 1, 2022.

[7] M. Qorib, T. Oladunni, M. Denis, E. Ososanya, and P. Cotae, “Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset,” Expert Syst Appl, vol. 212, 2023, doi: 10.1016/j.eswa.2022.118715.

[8] P. Shah, P. Swaminarayan, and M. Patel, “Sentiment analysis on film review in Gujarati language using machine learning,” 2022. doi: 10.11591/ijece.v12i1.pp1030-1039.

[9] M. Schonlau and R. Y. Zou, “The random forest algorithm for statistical learning,” Stata Journal, vol. 20, no. 1, 2020, doi: 10.1177/1536867X20909688.

[10] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, no. 2, 2016, doi: 10.1007/s11749-016-0481-7.

[11] J. Liu and E. Zio, “A scalable fuzzy support vector machine for fault detection in transportation systems,” Expert Syst Appl, vol. 102, 2018, doi: 10.1016/j.eswa.2018.02.017.

[12] L. Luthfi, R. Imam Muslem, D. Armiady, S. Sriwinar, R. Fajri, and I. Iqbal, “Analysis of CNN Method for Image Classification of Coconut Ripeness Levels,” in 2023 Eighth International Conference on Informatics and Computing (ICIC), IEEE, Dec. 2023, pp. 1–6. doi: 10.1109/ICIC60109.2023.10381964.

[13] I. R. Muslem, “KLIK: Kajian Ilmiah Informatika dan Komputer Image Classification pada Kasus American Sign Language Menggunakan Support Vector Machine,” Media Online), vol. 4, no. 2, pp. 1184–1191, 2023, doi: 10.30865/klik.v4i2.1242.

[14] I. R. Muslem and T. M. Johan, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Citra Ikan Menggunakan Algoritma Convolutional Neural Network dengan Arsitektur VGG-16,” Media Online), vol. 4, no. 2, pp. 978–985, 2023, doi: 10.30865/klik.v4i2.1209.

[15] B. Sabini, “Perbandingan Metode Konversi Grayscale Menggunakan Metrik Kualitas Butteraugli,” Jurnal Inovasi Informatika, vol. 6, no. 2, 2021, doi: 10.51170/jii.v6i2.189.

[16] P. Batra, N. Phalnikar, D. Kurmi, J. Tembhurne, P. Sahare, and T. Diwan, “OCR-MRD: performance analysis of different optical character recognition engines for medical report digitization,” International Journal of Information Technology (Singapore), vol. 16, no. 1, 2024, doi: 10.1007/s41870-023-01610-2.

[17] N. Premchaiswadi, S. Yimgnagm, and W. Premchaiswadi, “A scheme for salt and pepper noise reduction and its application for OCR systems,” WSEAS Transactions on Computers, vol. 9, no. 4, 2010.

[18] V. A. Yépez et al., “OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using seahorse xf analyzer,” PLoS One, vol. 13, no. 7, 2018, doi: 10.1371/journal.pone.0199938.

[19] J. Lázaro, J. L. Martín, J. Arias, A. Astarloa, and C. Cuadrado, “Neuro semantic thresholding using OCR software for high precision OCR applications,” Image Vis Comput, vol. 28, no. 4, 2010, doi: 10.1016/j.imavis.2009.09.011.

[20] rohan lal kshetry, “Image Preprocessing and Modified Adaptive Thresholding for Improving Ocr,” SSRN Electronic Journal, 2022, doi: 10.2139/ssrn.4135966.

Unduhan

Diterbitkan

27-12-2025

Cara Mengutip

Hayatun Jannah, C. H., Muslem, I., & Azmi, D. (2025). Klasifikasi Plat Nomor Kenderaan Bedasarkan Wilayah Tertentu Menggunakan Algoritma Optical Character Recognition (OCR). Jurnal Ilmu Komputer Aceh, 2(3). Diambil dari https://jurnal.fikompublisher.com/ilka/article/view/16